Insecticides selectivity with the parasitoid Tamarixia triozae (Hymenoptera: Eulophidae) to control Bactericera cockerelli (Hemiptera: Triozidae)
PDF (Español (España))
XML (Español (España))


manejo integrado
concentración letal media
insecticidas paratrioza
integrated management
medium lethal concentration

How to Cite

Vega-Chávez, J. L., Cerna-Chávez, E., Ochoa-Fuentes, Y. M., Alvarado-Cepeda, Y. A., Mayo-Hernández, J., & Hernández-Bautista, O. (2020). Insecticides selectivity with the parasitoid Tamarixia triozae (Hymenoptera: Eulophidae) to control Bactericera cockerelli (Hemiptera: Triozidae). Nova Scientia, 12(25).


Introduction: Bactericera cockerelli is an insect pest that damages Solanaceous crops, mainly potato (Solanum tuberosum L) and tomato (Solanum lycopersicum Mill). The B. cockerelli management has been the chemical control, however, attempts have been made to implement other control strategies with less toxic insecticides for the environment, human health, and non-white insects. This implementation consists of including biological control organisms such as predators, parasitoids, insecticides of natural and botanical origin, entomopathogenic fungi and chemical insecticides with less impact on beneficial fauna. In order to deepen these interactions, the present work determined the median lethal concentration (LC50) of insecticides on B. cockerelli populations and its parasitoid Tamarixia triozae. With these data, the selectivity percentage (SP) of different insecticides with the parasitoid T. triozae was calculated.

Method: Bioassays were performed using the immersion method evaluating six different insecticides; Profenofos and Cypermethrin of chemical origin; Azadirachtin and AEC (Essential oils of citrus with cinnamon and soap of vegetable oils) of botanical origin; strains of Beauveria bassiana and Metarhizium anisopliae from biological origin. With the data obtained, selectivity was determined using the Selectivity Ratio (PS), dividing the LC50 of the product over the natural enemy by the LC50 of the product over the pest insect, where values equal to or greater than one indicates selectivity.

Results: The insecticide products evaluated showed mortality in B. cockerelli and its parasitoid T. triozae. The lowest selectivity ratio was for Cypermethrin (PS = 0.01) and only M. anisopliae showed selectivity with T. triozae when obtaining a value of PS = 3.58. The other insecticides showed PS values less than one, so they were considered non-selective for parasitoids.

Conclusion: The lowest proportion of selectivity was for Cypermethrin (PS = 0.01) and only M. anisopliae showed selectivity with T. triozae when obtaining a value of PS = 3.58. The other insecticides showed PS values lower than one, so they were considered non-selective.
PDF (Español (España))
XML (Español (España))


Abbott, W. (1925). A Method For Computing The Effectiveness Of An Insecticide. Journal Of Economic Entomology, (2), 265-267. DOI:

Álvarez, Z. R., & Delgadillo S. F. (2004). Enfermedades Del Tomate Y Chile Bell. Pp 69- 99. En: Sánchez, R. F. J., Moreno, R. J., Puente M. L., & Araiza Ch. J. (Eds.). Memorias Del IV Simposio Nacional De Horticultura. Invernaderos: Diseño, Manejo Y Producción. Torreón, Coah. México.

Bacci, L., Picanço, M. C., Rosado, J. F., Silva, G. A., Crespo, A. L. B., Pereira, E. J. G., & Martins, J. C. (2009). Conservation Of Natural Enemies In Brassica Crops: Comparative Selectivity Of Insecticides In The Management Of Brevicoryne Brassicae (Hemiptera: Sternorrhyncha: Aphididae). Applied Entomology And Zoology, 44(1), 103-113. DOI:

Bravo, M. E., & L. P. López. (2007). Principales Plagas Del Chile De Agua En Los Valles Centrales De Oaxaca. La Revista De Fundación Produce, Oaxaca A.C., 14-15.

CABI. (2015). Bactericera Cockerelli. [Distribution Map]. Distribution Maps Of Plant Pests, No. June. Wallingford, Uk: Cabi, Map 793. Disponible En http://www.Cabi.Org/Isc/Datasheet/45643 [Fecha De Revisión: 15 julio 2020].

Cerna, E., Ail, C., Landeros, J., Sánchez, S., Badii, M., Aguirre, L. & Ochoa Y. 2012. Comparison Of Toxicity And Selectivity Of The Pest Bactericera Cockerelli And Its Predator Chrysoperla Carnea. Agrociencia, 46(8), 783-793.

Cerna, E., Ochoa, Y., Aguirre L. A., Flores M., & Landeros, J. (2013). Determination Of Insecticide Resistance In Four Populations Of Potato Psillid Bactericera Cockerelli (Sulc.) (Hemiptera: Triozidae). Fyton, 82, 63-6.

Cerón-González, C., Lomeli-Flores, J. R., Rodríguez-Leyva, E. & Torres-Ruíz, A. (2014). Fecundidad Y Alimentación De Tamarixia Triozae (Hymenoptera: Eulophidae) Sobre El Psílido De La Papa Bactericera Cockerelli. Revista Mexicana De Ciencias Agrícolas, 5(5), 893-899.

Chen C., He X., Zhou P. & Wang O. (2020). Tamarixia triozae, an important parasitoid of Bactericera cockerelli: circadian rhythms and their implications in pest management. BioControl. Publicación en línea. DOI:

Coelho, C. A. A., Souza, N. A., Feder, M.D., Silva, C. E., García, E. S., Azambuja, P., González, M. S., & Rangel, E.F. (2006). Effects Of Azadirachtin On The Development And Mortality Of Lutzomyia Longipalpis Larvae (Diptera: Psychodidae: Phlebotominae). Journal Of Medical Entomology, 43(2), 262-266. DOI:[0262:EOAOTD]2.0.CO;2

Croft, B. A. (1990). Arthropod Biological Control Agents And Pesticides. New York, USA: John Wiley And Sons. DOI:

Crosslin, J. M., & J. E. Munyaneza. (2009). Evidence That The Zebra Chip Disease And The Putative Causal Agent Can Be Maintained In Potatoes By Grafting And In Vitro. American Journal Of Potato Research, 86(3), 183-187. DOI:

Díaz-Montano, J., & Trumble, J. T. (2013). Behavioral Responses Of The Potato Psyllid (Hemiptera: Triozidae) To Volatiles From Dimethyl Disulfide And Plant Essential Oils. Journal Of Insect Behavior, 26(3), 336-351. DOI:

Finney, D. (1971). Probit Analysis. Cambridge At The University. DOI:

Garzón-Tiznado, J. A., Cárdenas-Valenzuela, O. G., Bujanos-Muñiz, R., Marín-Jarillo, A., Becerra-Flora, A., Velarde-Félix, S., Reyes-Moreno, C., González-Chavira, M., & Martínez-Carrillo, J. L. (2009). Asociación De Hemiptera: Triozidae Con La Enfermedad Permanente Del Tomate En México. Agricultura Técnica En México, 35(1), 61-72.

Ghazawy, N. A., Awad, H. H., & Rahman, K. M. A. (2010). Effects Of Azadirachtin On Embryological Development Of The Desert Locust Schistocerca Gregaria Forskål (Orthoptera: Acrididae). Journal Of Orthoptera Research, 19(2), 327-332. DOI:

Greenway, G. (2014). Economic Impact Of Zebra Chip Control Costs On Grower Returns In Seven Us States. American Journal Of Potato Research, 91(6), 714-719. DOI:

Guenthner, J., Goolsby, J., & Greenway, G. (2012). Use And Cost Of Insecticides To Control Potato Psyllids And Zebra Chip On Potatoes. Southwestern Entomologist, 37 (3), 263-270. DOI:

Guenthner, J., & Greenway, G. (2010). Zebra Chip Economics. Zebra Chip Reporting Session.

Guenthner, J., Michael, K., & Nolte, P. (2001). The Economic Impact Of Potato Late Blight On Us Growers. Potato Research, 44(2), 121-125. DOI:

Hansen, A. K., Trumble, J. T., Stouthamer, R., & Paine, T. D. (2008). A New Huanglongbing (Hlb) Species, Candidatus Liberibacter Psyllaurous, Found To Infect Tomato And Potato, Is Vectored By The Psyllid Bactericera Cockerelli (Sulc). Applied And Environmental Microbiology, 74(18), 5862-5865. DOI:

Ibarra-Cortés, K. H., Guzmán-Franco, A. W., González-Hernández, H., Ortega-Arenas, L. D., Villanueva-Jiménez, J. A., & Robles-Bermúdez, A. (2018). Susceptibility Of Diaphorina Citri (Hemiptera: Liviidae) And Its Parasitoid Tamarixia Radiata (Hymenoptera: Eulophidae) To Entomopathogenic Fungi Under Laboratory Conditions. Neotropical Entomology, 1-8. DOI:

Ibrahim, M. A.; Kainulainen, P., Aflatuni, A., Tiilikkala, K., & Holopainen, J. K. (2001). Insecticidal, Repellent, Antimicrobial Activity And Phytotoxicity Of Essential Oils: With Special Reference To Limonene And Its Suitability For Control Of Insect Pests. Agricultural And Food Science In Finland, 10(3), 243-259. DOI:

Khelfane-Goucem, K., Lardjane, N., & Medjdoub-Bensaad, F. (2016). Fumigant And Repellent Activity Of Rutaceae And Lamiaceae Essential Oils Against Acanthoscelides Obtectus Say. African Journal Of Agricultural Research, 11(17), 1499-1503. DOI:

Koul O., Walia S., & Dhaliwal, G. S. (2008). Essential Oils As Green Pesticides: Potential And Constraints. Biopesticides International, 4(1): 63–84.

Kumar, P., Mishra, S., Malik, A., & Satya, S. (2012). Insecticidal Evaluation Of Essential Oils Of Citrus Sinensis L. (Myrtales: Myrtaceae) Against Housefly, Musca Domestica L. (Diptera: Muscidae). Parasitology Research, 110(5): 1929-1936. DOI:

Liu, D., Trumble, J. T., & Stouthamer, R. (2006). Genetic Differentiation Between Eastern Populations And Recent Introductions Of Potato Psyllid (Bactericera Cockerelli) Into Western North America. Entomologia Experimentalis Et Applicata, 118(3): 177-183. DOI:

Liu, T. X., Zhang, Y. M., Peng, L. N., Rojas, P., & Trumble, J. T. (2012). Risk Assessment Of Selected Insecticides on Tamarixia Triozae (Hymenoptera: Eulophidae), A Parasitoid Of Bactericera cockerelli (Hemiptera: Trizoidae). Journal Of Economic Entomology, 105(2): 490-496. DOI:

López, M. M., Gastélum, L. R., Olivas, O. M. C., & Corrales M. J. L. (2003). Experiencia Con Paratrioza Cockerelli Sulc. (Homoptera: Psyllidae) En Tomate Grape Variedad ‘Santa’ Y Berenjena Solanum Melongena (670-675). En: Memorias VI Congreso Internacional En Ciencias Agrícolas. UABC-Ica, Cesvbc, Fundación Produce B.C, Sagarpa. Mexicali, B.C.

Luna-Cruz, A., Lomeli-Flores, J. R., Rodríguez-Leyva, E., Ortega-Arenas, L. D., & Huerta-De La Peña, A. (2011). Toxicidad De Cuatro Insecticidas Sobre Tamarixia Triozae (Burks) (Hymenoptera: Eulophidae) Y Su Hospedero Bactericera Cockerelli (Sulc)(Hemiptera: Triozidae). Acta Zoológica Mexicana, 27(3), 509-526.

Luna-Cruz, A., Rodríguez-Leyva, E., Lomeli-Flores, J. R., Ortega-Arenas, L. D., Bautista-Martínez, N., & Pineda, S. (2015). Toxicity And Residual Activity Of Insecticides Against Tamarixia Triozae (Hymenoptera: Eulophidae), A Parasitoid Of Bactericera Cockerelli (Hemiptera: Triozidae). Journal Of Economic Entomology, 108 (5), 2289-2295. DOI:

Metcalf, R. L. (1972). Development Of Selective And Biodegradable Pesticides. (137-156). En: Pest Control Strategies For The Future. Washington, D. C., USA: Natural Academic Of Sciences.

Muñiz-Reyes, E., Barreto, C. A. R., Rodríguez-Hernández, C., & Ortega-Arenas, L. D. (2016). Actividad Biológica De Nim En Adultos De Mosca Blanca Trialeurodes Vaporariorum (Aleyrodidae) West. Revista Mexicana De Ciencias Agrícolas, 7(6), 1283-1295.

Munyaneza, J. E., Crosslin, J. M., & Upton, J. E. (2007). Association Of Bactericera cockerelli (Homoptera: Psyllidae) With “Zebra Chip”, A New Potato Disease In Southwestern United States And Mexico. Journal Of Economic Entomology, 100(3), 656–663.

Orozco-Santos, M., Robles-González, M., Hernández-Fuentes, L. M., Velázquez-Monreal, J. J., de Jesús Bermúdez-Guzmán, M., Manzanilla-Ramírez, M., Manzo-Sánchez G., & Nieto-Ángel D. (2016). Uso de Aceites y Extractos Vegetales para el Control de Diaphorina citri Kuwayama1 en Lima Mexicana en el Trópico Seco de México. Southwestern Entomologist, 41(4), 1051-1066. DOI:

Pérez-Bernal, A. L., Morales-Alonso, S. I., Martínez-Castillo, A. M., Pineda-Guillermo, S., Chavarrieta-Yáñez, J. M., & Figueroa-De la Rosa J. (2018). Compatibilidad de dos insecticidas, azadiractina y flufenoxuron, con Tamarixia triozae Burks, 1943 (Hymenoptera: Eulophidae), ectoparasitoide del psilido del tomate. Entomología Mexicana, 5, 164-169.

Richards, B. L. & Blood, H. L. (1933). Psyllid Yellows of The Potato. Journal Of Agriculture Research, 46(3), 189-216.

Rodríguez, I., Morales, H., & Cardoma C. (2003). Líneas base, dosis diagnóstico y medición periódica de resistencia a insecticidas en poblaciones de adultos e inmaduros de Trialeurodes vaporariorum (Homoptera: Aleyrodidae) en el Valle del Cauca, Colombia. Revista Colombiana de Entomología, 29(1), 21-27

Rojas, P., Rodríguez-Leyva, E., Lomeli-Flores, J. R., & Liu, T. X. (2014). Biology and Life History Of Tamarixia Triozae, A Parasitoid Of The Potato Psyllid Bactericera Cockerelli. Biocontrol, 60(1), 27-35. DOI:

Sánchez-Peña, S. R., Casas-De-Hoyo, E., Hernández-Zul, R., & Wall, K. M. (2007). A Comparison of The Activity Of Soil Fungal Isolates Against Three Insect Pests. Journal of Agricultural And Urban Entomology, 24(1), 43-48. DOI:

Secor, G. A., & Rivera-Varas, V. V. (2004). Emerging Diseases of Cultivated Potato And Their Impact On Latin America. Revista Latinoamericana De La Papa, 1 (Suplemento), 1–8.

Tamayo-Mejía, F., Tamez-Guerra, P., Guzmán-Franco, A. W., & Gómez-Flores, R. (2015). Can Beauveria Bassiana Bals. (Vuill) (Ascomycetes: Hypocreales) And Tamarixia Triozae (Burks) (Hymenoptera: Eulophidae) Be Used Together For Improved Biological Control Of Bactericera Cockerelli (Hemiptera: Triozidae)? Biological Control, 90, 42–48. DOI:

Teulon, D. A. J., Workman, P. J., Thomas, K. L., & Nielsen, M. C. (2009). Bactericera Cockerelli: Incursion, Dispersal and Current Distribution On Vegetable Crops In New Zealand. New Zealand Plant Protection, 62: 136-144. DOI:

Van Driesche, R. G., & Bellows, T. S. (1996). Pest Origins, Pesticides, And the History Of Biological Control (3-20). En: Van Driesche, R. G.; T. S. Bellows (Eds). Biological Control. New York, USA: Chapman & Hall.

Vega, G. M. T., Rodríguez, J. C., Díaz, O.; Bujanos, R., Mota, D.; Martínez, J. L., Lagunes, A., & Garzón, J. A. (2008). Susceptibilidad A Insecticidas En Dos Poblaciones Mexicanas Del Salerillo, Bactericera Cockerelli (Sulc) (Hemiptera: Triozidae). Agrociencia, 42(2), 463-471.

Vega-Chávez, J. L. (2010). Determinación De Alimentación Y Preferencia De Tamarixia Triozae (Burks) (Hymenoptera: Eulophidae) Sobre Estadios De Bactericera Cockerelli (Sulc.) (Hemiptera: Psillidae). Tesis De Licenciatura. Universidad Autónoma Agraria Antonio Narro (UAAAN). Buenavista, Saltillo, Coahuila, México.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia